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Introduction

Speech production and music performance require rapid 
and accurate control of sequential patterns of a variety of 
sound properties. For the study of a timing control mecha-
nism of such complex motor sequences, songbirds pro-
vide a unique research model. Their songs consist of brief 
acoustic elements, and they appear to control the timing of 
these elements quite accurately. The present study aimed to 
assess in detail the tendencies for accuracy and variability 
of the song timing control in Bengalese finches (Lonchura 
striata var. domestica) and to understand the underlying 
neural mechanisms responsible for such tendencies.

The neural circuit in the song system that contributes 
to motor control consists of a descending pathway via a 
direct linkage from the premotor nucleus HVC (abbre-
viation used as proper name) to the robust nucleus of the 
arcopallium (RA). HVC has been reported to be involved 
in generating the timing and sequencing of song (Yu and 
Margoliash 1996; Hahnloser et  al. 2002; Long and Fee 
2008; Fee and Scharff 2010). Internal circuits within 
HVC produce regular timed sequences of neuronal bursts, 
and could be modeled as a synfire chain which can gen-
erate successive regular discharges by interlinked neu-
rons (Hahnloser et al. 2002; Long et al. 2010). Similarly, 
another study argued that both timing and motor gestural 
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information may be encoded in the spikes of HVC neurons 
(Amador et al. 2013). RA projects to motor neurons con-
trolling the vocal muscles and respiratory system (Suthers 
and Margoliash 2002), and contributes to the control of 
song acoustical features (Leonardo and Fee 2005; Sober 
et al. 2008) by assigning actual motor commands to each 
time point of the HVC bursts (Fee and Scharff 2010). 
A mild cooling of HVC (to slow its bursting activity) 
resulted in slowing down the song tempo, whereas cooling 
of RA did not (Long and Fee 2008). These studies strongly 
suggest that HVC is at the top of the processing stream of 
song timing control.

A repetition-by-repetition variance of song acoustical 
properties has drawn much interest in the study of song 
learning and maintenance in finches (for example, Scharff 
and Nottebohm 1991; Kao et  al. 2005; Tumer and Brain-
ard 2007; Andalman and Fee 2009; Fee and Goldberg 
2011; Sober and Brainard 2012; Woolley and Kao 2015). 
Birdsong also has variability in several types of temporal 
properties. Previous studies on the zebra finch, one model 
animal used in songbird research, have reported that a 
within-day, slow pattern of variation in song tempo was 
observed repeatedly over days (Glaze and Troyer 2006, 
2012; Aronov and Fee 2012). This circadian pattern in 
song tempo appeared to depend on the temperature varia-
tion of the brain, specifically of the HVC nucleus (Aronov 
and Fee 2012). On the other hand, an analysis of local tim-
ing structures that separately assessed durations of acoustic 
elements (syllables or notes) and silent intervals (gaps) has 
suggested a different factor for this temporal variability. A 
given acoustic element showed a stronger duration trade-off 
relationship with its following gap, compared with its pre-
ceding gap (Glaze and Troyer 2006), suggesting that sound 
onsets (but not offsets) represent alignment cues for the 
song tempo. A greater variability seen in gaps than in syl-
lables has been also reported and suggests involvement of 
different timing factors for each. (Glaze and Troyer 2006; 
Cooper and Goller 2006; Andalman et al. 2011; Glaze and 
Troyer 2012). Last, ‘motif-boundary’ gaps were relatively 
longer and more variable than ‘within-motif’ gaps (Glaze 
and Troyer 2006, 2012).

Recent advances in studies using Bengalese finches have 
provided an opportunity to assess the control mechanism of 
song sequencing with more variable, stochastic transition 
patterns (Okanoya 2004; Sakata and Brainard 2006; War-
ren et al. 2012). In Bengalese finch songs, sound intervals 
segmented by silent intervals tend to be shorter and have 
simpler acoustical patterns compared to zebra finch songs 
(and thus we term the sound elements in Bengalese finch 
songs ‘notes’ in this article). Further assessment of how 
temporal aspects of songs are similar between Bengalese 
and zebra finches would be beneficial for future neurosci-
entific studies of these two species.

Here, we assessed one-day recordings of Bengalese finch 
songs to study the variability of note and gap durations and 
determine how much temporal variation is characteristic of 
song. We analyzed song data based on note pairs. One pre-
vious study of zebra finches used an analysis method that 
integrated local and global temporal factors into one analy-
sis model (Glaze and Troyer 2006, 2012). However, we did 
not employ this method in our analysis because Bengalese 
finch song lacks a single stereotyped sequence, and instead 
follows a more stochastic pattern. Thus, we separately ana-
lyzed global and local factors, and then assessed local vari-
ation after eliminating global changes.

Methods

Recording

The songs of eighteen male Bengalese finches (Lonchura 
striata var. domestica) were recorded. All birds were adult 
(>140  dph), and thus their songs had already crystal-
lized. None of the birds shared tutor songs (i.e., individual 
songs were sufficiently different in note morphology and 
sequence pattern). Birdsongs were recorded by a micro-
phone (Audio-technica, PRO35) that attached above a bird-
cage, which was placed in a soundproof chamber. Output 
from the microphone was amplified by a mixer (Mackie 
402-VLZ3) and digitized via an audio interface (Roland 
UA-1010/UA-55) sampled at 44.1 kHz/16-bit. Birds were 
placed in the recording chamber at least 1 day before the 
start of recording, and were removed from the chamber the 
day after recording to obtain songs from an entire day. To 
reduce storage size, custom software was used to record 
only singing by monitoring the sound amplitude level. 
The recorded data were then down-sampled to 32  kHz. 
Birds were obtained from an aviary located in our labora-
tory at the University of Tokyo, Japan. The temperature and 
humidity of the aviary were maintained at approximately 
25 °C and 60 %, respectively. Light/dark cycle was 13/11 h.

Note segmentation

To separate song notes from the successive recoding data, 
we used a thresholding algorithm as follows. First, an origi-
nal waveform was bandpassed at 1–8  kHz and its ampli-
tude envelope was extracted by full-wave rectification and 
lowpass filtered at 200  Hz. Then, periods of sound were 
detected by thresholding the amplitude envelope at a pre-
defined level. We defined the level threshold as 6–10  SD 
above the mean of the background noise level. The mean 
of the background noise was estimated by detecting a peak 
in the sound level histogram. The SD was estimated from 
the full width at half maximum value of the histogram. If 
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two sounding elements had a micro-gap (duration typi-
cally less than 5  ms) between them, they were integrated 
into one note. The lower limit of gap duration was adjusted 
between 3 and 13 ms for each bird as necessary to prevent 
fragmentation of the note. Last, short elements whose dura-
tions were less than 10–30 ms (threshold adjusted for each 
bird) were regarded as simply motion noises or beak click-
ing sounds, and were not labeled as song notes. Suitable 
amplitude and duration thresholds were chosen for each 
bird by visual inspection of the spectrograms.

Note and gap labeling

After note segmentation, note types were classified by a 
semi-automatic procedure described in our previous arti-
cle (Tachibana et  al. 2014). First, we made an instruction 
data set that was used to train the machine classifier. The 
instruction data were derived from 2 min (~700 notes) of 
sound excerpts that were randomly extracted from various 
time points within the recording of each bird. All notes in 
the instruction dataset were manually labeled. The aver-
age number of note labels was 8.3 ± 2.59 (M ± SD) per 
bird. Non-singing calls, introductory notes, motion-related 
noises, and other environmental noises were all classi-
fied as elements of no interest (i.e., labeled as ‘x’). Then, 
we calculated high-dimensional acoustic features (such 
as duration, entropy, zero cross, and spectral and cepstral 
coefficients) for all recorded notes. We trained a linear 
SVM classifier by the instruction dataset, and finally, the 
trained classifier classified all remaining data.

A gap was defined as a silent period with duration of 
less than 300  ms during singing. Gaps were labeled by a 
combination of preceding and following note types, e.g., 
the gap between notes ‘a’ and ‘b’ was labeled as ‘a-b’ 
(Fig. 1a). To eliminate possible erroneous labeling caused 
by the note classification error, we only labeled gaps exist-
ing between note pairs whose occurrence and transition 
probabilities were more than 1 %. All silent periods which 
were not labeled as a gap were labeled as elements of no 
interest (such as ‘x-x’). The average number of gap labels 
was 9.3 ± 2.99 per bird.

A song typically begins with introductory notes and is 
followed by a resting period of several seconds. We termed 
the unit of each song rendition a ‘bout’. Silent periods that 
were longer than 300  ms were regarded as boundaries of 
song bouts. The bouts consisting of less than two notes 
(irrespective of ‘x’ elements) were excluded from all analy-
ses to avoid taking incomplete bouts into account.

Fine timing calculation

Because level thresholding did not provide sufficient tem-
poral resolution for determining segment boundaries, we 

employed dynamic time warping (DTW; see Anderson 
et al. 1996; Glaze and Troyer 2006, 2007) to determine the 
precise temporal boundaries between notes and gaps. The 
time warping was performed on spectro-temporal deriva-
tives of the spectrogram. Original spectrograms of all same-
type notes had 125  Hz and 0.5  ms resolutions (256-point 
Hanning window, 248-point overlap), and were normalized 
to have the same amplitude levels before calculating their 
derivatives. The spectrogram was convolved with a filter 
coefficient set [−2, −1, 0, 1, 2] in both vertical (i.e., fre-
quency) and horizontal (time) directions to obtain 5-point 
gradient slopes for making the spectro-temporal deriva-
tives. We made two types of the derivative; one was diago-
nally upward and the other was diagonally downward ver-
sion, those were calculated by flipping the filter coefficient 
upside down. The vertical concatenation of upward and 
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Fig. 1   Examples of spectrograms, waveforms and derivatives that 
show labels and note–gap boundaries. a Spectrogram of example 
song excerpt with notes and gaps labeled. b Amplitude envelopes 
and averaged spectrogram of one representative type of note. c Two 
derivatives of spectrogram used for dynamic time warping (DTW) 
to detect fine-grained temporal boundaries between notes and gaps. 
These were derived as diagonally upward and downward versions of 
spectro-temporal derivatives of original spectrogram shown in b. Dot-
ted lines show boundaries of note onset and offset
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downward derivatives (Fig. 1c) was used as a feature space 
in the DTW processing. Only spectral regions between 500 
and 7000 Hz of the derivative were used. The warping tem-
plate was defined as an average of the spectrogram deriva-
tives of notes whose duration were between 25 and 75 % of 
all of the same-type notes. Onset and offset boundaries of 
the template were defined by visual inspection of derivative 
and original spectrograms. For each pair of time frames, the 
cosine similarity was calculated by measuring the distance 
between the template and each note. The template was 
time-warped and fitted to each note sample by a standard 
DTW algorithm. Then, the timing boundaries of the note 
were determined from the warped template. Outliers (deter-
mined as data more than 1.5 interquartile ranges below the 
first quartile or above the third quartile for each note and 
gap type) were excluded from further analyses. This out-
lier process excluded on average 2.6 ± 0.7 and 2.4 ± 0.7 % 
of notes and gaps, respectively, per bird. Finally, we col-
lected 149 note and 168 gap types from all of the birds, and 
1969.7 ± 1701.4 and 1313.4 ± 911.7 samples per note and 
gap type, respectively.

Overall properties

First, we assessed the overall distributions of mean and 
coefficient of variation (CV) of duration for each note 
and gap type. In these analyses, we assessed differences 
in the note and gap distributions using the Wilcoxon rank-
sum test with significance level α =  0.05. Moreover, we 
searched for differences in the temporal properties of gaps 
between stereotypic and branching transitions. Gaps were 
divided into two groups according to the transition proba-
bility of the preceding and following note pair surrounding 
the gap: the ‘stereotypic’ group was defined as gaps with 
a transition probability of ≥90 % (indicated as arrowheads 
and dotted lines in Fig. 3a, f), and the remaining gaps were 
placed in the ‘branching’ group. The transition probabil-
ity was calculated in two ways, as both the divergence and 
convergence probabilities (Wohlgemuth et  al. 2010; Fuji-
moto et al. 2011; Bouchard and Brainard 2013), where the 
divergence probability is a transition probability from one 
note to the following note, and the convergence probability 
is from one note to the previous note. We used a Wilcoxon 
rank-sum test with significance level α = 0.05 to assess dif-
ferences in the distribution of stereotypic and branching 
groups.

Within‑day and within‑bout variation analysis

To identify slowly varying global factors of song temporal 
control, we assessed within-day and within-bout variations 
before directly accessing local temporal features. For the 
within-day analysis, note and gap durations were converted 

into proportional values (in percentages) for each type by 
dividing by the mean duration for that type. The inter-onset 
interval (IOI) was also calculated as a summed duration 
of the note and gap for each note pair, and converted into 
the proportional values. Then, data were averaged for each 
1  h time bin. Time bins that contained less than 20 sam-
ples were discarded to ensure that average data were stable. 
The linear rate of change was calculated as slopes by lin-
ear regression for within-day changes of note, gap, and IOI 
durations. Statistical differences in the slopes was assessed 
by a one-sample t test with significance level α  =  0.05 
(with Bonferroni correction for three comparisons). Addi-
tionally, hourly changes of sound amplitude (defined as the 
root-mean-squares (RMS) of note waveforms), bout dura-
tion, and note production rate were assessed. The change 
in amplitude and bout duration was calculated as the devia-
tion from averaged values of all data for each bird. For the 
calculation of the note production rate, the number of notes 
was counted every hour and converted into a proportion of 
the total count.

We analyzed within-bout changes in a similar way to the 
within-day analysis, but within each bout. The proportional 
values (in percentage) of note, gap, and IOI durations were 
zero-centered by subtracting the mean values within each 
bout to eliminate between-bout differences (or hourly drift), 
and averaged for each one-second time bin. Time bins con-
taining less than 20 samples were discarded to ensure that 
average data were stable. Then, the rate of change was cal-
culated as slopes by linear regression for the note, gap, and 
IOI durations of each bird. For this calculation, we actually 
divided the data into two parts: an ‘early’ portion, including 
data up to 6.5 s after the bout started, and a ‘late’ portion 
which was the remaining data. We employed this method 
because results appeared to show different tendencies 
between the early and late portions of the bout (see Results 
section and Fig.  5). Only bouts whose durations were 
longer than 10  sec were included in the slope analysis to 
avoid possible biases in shorter bouts. Using this criterion, 
data from three birds were excluded from this analysis. The 
slopes of the linear regression obtained from fifteen birds 
were statistically assessed by a one-sample t test with sig-
nificance level α = 0.05 (with Bonferroni correction for six 
comparisons).

Cancelation of global factors and auto‑regression 
analysis

The variation factors affecting local temporal structure 
were investigated after eliminating global factors, which 
resulted in slowly varying drift-like changes, such as song 
tempo acceleration/deceleration over song bouts. We per-
formed this cancelation for each song bout using a cancela-
tion line (see Fig. 6a) consisting of two slopes (for the early 
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and late parts of the bout) and one constant term (mean of 
each bout). These slopes and constant term corresponded to 
within-bout and within-day drift, respectively. The slopes 
were identical to the ones already estimated in the within-
bout analysis for note, gap, and IOI data in the early and 
late parts of the bout for each bird. The constant values 
were calculated as the mean values within each bout. The 
cancelation line had proportional values (relative to the 
global mean of the entire data set). All note, gap, and IOI 
durations were divided by corresponding cancelation lines 
for each bout, respectively. We assessed the distributions of 
CVs for each note and gap type after the cancelation. The 
cancelation was performed on data for fifteen birds whose 
slopes were obtained as explained in the previous sec-
tion, and we obtained 123 note and 138 gap types after the 
cancelation. We used a Wilcoxon rank-sum test with sig-
nificance level α =  0.05 to assess differences in the note 
and gap distributions.

Next, we estimated the auto-regression (AR) effects on 
song temporal structure. One can hypothesize a trade-off 
relationship among successive durations of neighboring 
elements to maintain the overall tempo of the bout. For 
example, a note that is prolonged from its average duration 
may result in the following note being shorter than its aver-
age duration, and vice versa. Furthermore, it can also be 
expected that this type of trade-off relationship could create 
small duration changes in nearby elements (i.e., successive 
notes) as well as elements that are more distant. To clarify 
if there exists such a self-regressive relationship between 
successive song elements, we performed a five-ordered AR 
analysis on the within-bout data. This analysis was sepa-
rately performed on note, gap, and IOI duration sequences. 
Note that we used the data set in which global effects had 
been canceled. The mean value was subtracted from the 
original duration for each element to determine the devia-
tion of duration. This residual duration stream underwent 
the AR analysis, which is expressed as follows:

where xn indicates the duration of the n th element (note, 
gap, or IOI) in a given song bout, and xn is the mean value 
of element xn across all song bouts. Thus, yn represents 
the duration deviation of xn, and a1–a5 are the AR coeffi-
cients. If the m th AR coefficient (am) has a positive large 
value, two elements that apart in distance of m have a nega-
tive correlation (trade-off). Additionally, we performed the 
AR analysis on a data stream that consisted of both notes 
and gaps (i.e., note–gap–note–gap…). For this note–gap 
stream, we estimated ten-ordered AR coefficients. Notes 
and gaps that could not be classified as a given type were 
replaced with random values with standard deviation that 

yn = xn − x̄n

yn = − a1yn−1 − a2yn−2 − · · · − a5yn−5

was matched to the analyzing data stream. The successive 
introductory notes (repeated >3 times) were eliminated 
from this analysis because of their instability. We also elim-
inated short streams that included less than twenty notes to 
ensure reliable results. This limitation excluded data from 
one bird, and hence, we performed the analysis only on the 
remaining 14 birds. To remove artifacts in the AR coeffi-
cients that are usually caused by the limitation of shorter 
stream length, we made permuted streams where the dura-
tion deviations were same as the original stream, but ran-
domly ordered, and subtracted AR coefficients of the per-
muted data from that of the original (not permuted) stream. 
Statistical differences of the relative AR coefficients were 
assessed by one-sample t tests with significance level 
α = 0.05 (with Bonferroni correction). Note that trade-off 
effects between adjacent elements (first AR coefficient) in 
IOI or note–gap streams are possibly caused by measure-
ment errors in detection of the boundary of note onsets and 
offsets. Thus, we did not focus on the first coefficient of 
IOIs and note–gap steams in the discussion section.

Results

Overall temporal properties and temporal properties 
related to transition probability

A total 149 note types and 168 gap types were derived from 
the 18 birds. On average, gaps (M ± SD: 45.8 ± 30.1 ms) 
were significantly shorter than notes (89.3 ± 28.9 ms); Wil-
coxon rank-sum test, z = 11.46, p < 0.001 (Fig. 2a). A ten-
dency in which longer duration was associated with larger 
variability was observed in both gaps and notes, though 
this tendency was greater in gaps than in notes (Fig.  2b). 
Mean distributions of note and gap durations, clearly dem-
onstrated that gaps were more variable in duration than 
notes (Fig.  2c), even if having almost the same range of 
mean duration (60–80 ms, indicated as a black bar above 
Fig. 2b; 32 note and 30 gap labels). The coefficient of vari-
ation (CV) of most notes (3.7 ± 1.6 %) was significantly 
less than that of gaps (10.2 ± 4.1 %), Wilcoxon rank-sum 
test, z = −14.38, p  <  0.001 (Fig.  2d). This difference in 
variability was similarly confirmed in the non-parametric 
version of variance estimates (i.e., quartile coefficients of 
dispersion): note (2.5 ±  1.1 %), gap (6.9 ±  3.0 %); Wil-
coxon rank-sum test, z = −14.34, p < 0.001. Additionally, 
we calculated CVs of notes and gaps in a data set which 
was processed with a more relaxed outlier threshold of 
3.0-interquartile range to test the influence of the outlier 
exclusion process. We derived a similar pattern of results: 
note (4.1 ±  1.8 %), gap (11.5 ±  4.4 %); Wilcoxon rank-
sum test, z = −14.51, p < 0.001.
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The relationship between a gap and its preceding or fol-
lowing note was also assessed. Each gap type was paired 
with a note type that preceded or followed that gap type. 
Then, mean durations of mean durations of gap types were 
plotted as functions of those note types on the logarithmic 
scale (Fig. 2e, f). The preceding notes had mean durations 
significantly correlated with mean gap duration: Pearson’s 
r = 0.28, n = 168, p < 0.001; though the following notes 
did not: Pearson’s r = 0.12, n = 168, p = 0.137.

Transition probability and gap duration

Differences in temporal properties between ‘stereotypic’ 
and ‘branching’ gaps were investigated. For divergence 
probability, stereotypic and branching groups had 60 and 
108 gaps, respectively. Likewise, when measuring conver-
gence probability, stereotypic and branching groups had 
64 and 104 gaps, respectively. The mean gap duration of 
the stereotypic transition (divergence: 37.9  ±  24.6  ms; 
convergence: 37.9  ±  26.7  ms) was significantly shorter 
than that of the branching transition (div.: 50.1 ± 32.0 ms; 
con.: 50.6 ± 31.2 ms) for both divergence and convergence 
probabilities; Wilcoxon rank-sum test, div.: z  =  −2.74, 
p = 0.012 (Fig. 3c); con.: z = −3.09, p = 0.004 (Fig. 3h). 
However, the CV of gaps did not show significant differ-
ences between the stereotypic (div.: 9.6  ±  4.4  %; con.: 
9.8 ±  4.5  %) and branching groups (div.: 10.5 ±  3.9  %; 
con.: 10.4  ±  3.8  %); Wilcoxon rank-sum test, div.: 
z = −2.09, p = 0.073 (Fig. 3e); con.: z = −1.45, p = 0.295 
(Fig. 3j).

Within‑day variations

Within-day trajectories of note durations and IOIs showed 
a similar pattern, having the peak around the first several 
hours after the light turned on, and decaying toward the 
evening (Fig.  4a, c). Mean duration per an hour of pro-
portional note durations showed a tendency to shorten 
gradually from morning to evening while gap durations 
did not show a clear pattern (Fig.  4b). The slopes of lin-
ear regression fitting (Fig.  4d) for note durations and 
IOIs as functions of time were significantly negative 
(−0.14 ±  0.08 and −0.11 ±  0.10 percentages per hour, 
respectively) but this was not the case for gap durations 
(−0.03 ± 0.17): one-sample t test with Bonferroni correc-
tion; note: t(17) = −7.34, p < 0.001; gap: t(17) = −0.77, 
p =  1.261; IOI: t(17) = −4.31, p =  0.001. To assess a 
coupling between a note’s duration and its amplitude we 
also measured the within-day change of sound amplitude 
in notes (Fig.  4e), however, no clear tendency was found 
across birds. Note production rates showed a variable, but 
a weak tendency towards declining from morning to even-
ing (Fig. 4f). Bout durations did not show obvious change 
throughout the day (Fig. 4g).

Within‑bout variations

Regarding variations within bouts, the note duration 
and IOI tended to be prolonged gradually (Fig.  5a, c), 
while the gap duration did not show a consistent change 
(Fig. 5b). More specifically, the gap duration appeared to 
be gradually shortened and the IOI was almost constant 
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within the early part of bout (until 6.5 s). In the late part 
of bout (after 6.5 s), the gap duration and IOI tended to be 
prolonged. We separately performed the linear regression 
fitting to both the early and late parts (1–6.5 and 6.5–14 s) 
of the 14 s bout data to confirm the differences observed 
in gap and IOI durations for early and later portions of 
the song bout. We found that (Fig. 5d) the early data were 
significantly positive only for notes (0.31 ± 0.19 percent-
ages per second), but not for gaps (−0.40 ± 0.77) or IOIs 
(0.07 ±  0.28); one-sample t test with Bonferroni correc-
tion; notes: t(17) = 6.33, p < 0.001; gaps: t(17) = −2.03, 
p =  0.372; IOIs: t(17) =  0.99, p =  2.033. However, the 
slopes for the late parts of song were significantly posi-
tive for notes (0.16  ±  0.09), gaps (0.42  ±  0.24), and 
IOIs (0.26 ±  0.12: notes: t(17) =  6.42, p  < 0.001; gaps: 
t(17) =  6.81, p  <  0.001; IOIs: t(17) =  8.55, p  <  0.001. 
Additionally, the note amplitude (calculated as RMS of 
the note waveform) was increased during the bout (early: 
0.38 ± 0.29 dB/s, late: 0.11 ± 0.14 dB/s; Fig. 5e). Mean 
bout duration was 9.86 ±  4.04  s (Fig.  5f), and the mean 

number of notes in a bout was 65.75 ±  35.3 (figure not 
shown).

Local variation

To focus on local temporal features, the slow drift-
ing components, i.e., within-day and within-bout varia-
tion, were canceled out from the song timing dataset (as 
described in the Method section). Cancelation of global 
and middle range factors slightly decreased the CV of notes 
(3.5 ±  1.6  %) and gaps (10.0 ±  3.9  %), but the relative 
difference between them remained the same (Fig.  6b; see 
also Fig.  2d). The CVs of gaps were significantly greater 
than that of notes, Wilcoxon rank-sum test, z = −13.06, 
p < 0.001.

On this pre-processed dataset, we assessed trade-off 
relationships among durations of local neighboring ele-
ments. We performed the AR analysis of duration devia-
tion within bouts to quantify how the trade-off effect was 
localized in the timing sequence. The analysis was sepa-
rately performed on note, gap, and IOI streams, and also on 
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successive note–gap sequences. Note that first coefficients 
obtained from AR analysis of IOI and note–gap streams 
were possibly due to measurement errors in detection of 
note boundary. Hence, they are not discussed in detail. The 
results showed no significant trade-off effects in note, gap 
and IOI stream (Fig. 6c–e) with the exception of the first 
coefficient for the note–gap stream (Fig. 6f). Statistical tests 
confirmed that only the first coefficient for note–gap stream 
was significantly positive; one-sample t test with Bonfer-
roni correction, a1(note–gap): t(13)  =  4.28, p  =  0.009; 
a2−10 (note–gap): t(13) = −2.52– + 2.38, p = 0.33–9.631.

Discussion

Using one-day-long recordings of Bengalese finch songs, 
the current study showed evidence in favor of distinct mul-
tiple sources of temporal variability in motor sequences. 
The duration of silent intervals, or gaps, was highly vari-
able compared to that of song notes. Mean gap durations 
were correlated with that of preceding notes, and also with 
transition probability. Characteristic tendencies were found 
in three time ranges: within-day drift, within-bout changes, 
and local jitter. These results suggest that there are distinct 
sources of temporal variability at multiple levels on the 
basis of the note–gap duration relationship.

General properties and differences in notes and gaps

We found that gaps had 3.1 times more variability than 
notes (2.8-times after cancelation of slow drifts). A simi-
lar variability difference has been reported in note and gap 
durations of zebra finches (Glaze and Troyer 2006, 2012; 
Cooper and Goller 2006; Andalman et al. 2011), though the 
differences in our results appear to be slightly larger than 
those of previous reports. In zebra finch studies, it has been 
suggested that the variability difference between sound 
elements and gaps was caused by different control mecha-
nisms (Andalman et  al. 2011); it is likely that HVC con-
trols expiratory activities during the production of sound 
elements, but for gap production, inspiratory activity could 
be influenced by noisy signals in circuits downstream of 
HVC.

Interestingly, the mean duration of a gap was correlated 
with the mean duration of the note preceding the gap, but 
not with that of the note following the gap. This note–gap 
relationship suggests that the timing control of gaps and 
their preceding notes is associated with one other in song 
production system. One zebra finch study suggested that 
inter-onset interval (preceding note +  gap), but not inter-
offset (gap  +  following note), represents the preferred 
alignment unit in song tempo control (Glaze and Troyer 
2006) according to their results on trade-off relationships 
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between note and gap durations. On the other hand, a 
study on song copying in zebra finches reported that when 
finches copy two chunks of song from a tutor, the dura-
tions of between-chunk gaps of the learned song appear to 
be more similar to the gap that precedes the second chunk 
rather than the gap that follows the first chunk (Williams 
and Staples 1992). This suggests the presence of inter-off-
set, but not inter-onset, units in the song development sys-
tem. The inconsistency between this study and our results 
might be associated with the dissociation in song control 
units between the perception of tutor songs for learning and 
the production of the bird’s own song. To clarify this issue, 
it would be helpful to perform a variability analysis on a 
combined data set made of the tutor songs and the devel-
oped songs of the juveniles.

Transition probability and gap duration

The observed difference in gap duration between the stereo-
typed and branching transitions could be interesting in con-
sidering the hierarchical structures of song motor control. 
This tendency was common in the two types of data derived 
using the divergence and convergence probabilities, although 
one study suggests that the convergence transition is more 

naturalistic in neural circuits than the divergence transition 
(Bouchard and Brainard 2013). The gap durations in stereo-
typic transitions were relatively short, whereas branching gaps 
had a variety of durations. This could be related to the find-
ing in zebra finches that ‘motif-boundary’ gaps were relatively 
longer and more variable than ‘within-motif’ gaps (Glaze and 
Troyer 2006, 2012), though our data did not show significant 
differences in the variability. In the Bengalese finch songs, we 
could not define a ‘motif’ or stereotypic subsequences, due to 
of the variable, stochastic nature of song sequencing (Okanoya 
2004). However, several previous studies in the Bengalese 
finch suggest the existence of note ‘chunks’ which are stereo-
typic transitions of several notes in song production (Seki et al. 
2008; Takahasi et al. 2010) and in song perception (Suge and 
Okanoya 2010). It has also been found that ‘within-chunk’ 
gaps were shorter than ‘between-chunk’ gaps (Takahasi et al. 
2010). Taken together, these studies and our results consist-
ently suggest that the transition stereotypy or chunking struc-
ture has some association with gap duration.

Acceleration throughout the day

The gradual changes during a day in note durations and 
IOIs are consistent with previous reports that demonstrate 
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a circadian change in song tempo (Glaze and Troyer 2006, 
2012; Aronov and Fee 2012). However, the observation 
that the within-day pattern in note durations and IOIs of 
the Bengalese finch song was inconsistent with the pattern 
of change in song tempo of zebra finches, which speeds up 
during the initial several hours of the day, and then slows 
down until evening (Glaze and Troyer 2006, 2012). This 
discrepancy in the pattern of change between them could 
reflect species differences in the timing control of the song 
motor system. On the other hand, another explanation can 
be raised from differences in body temperatures based on 
findings that demonstrate that the song tempo depends on 

the temperature in the HVC nucleus (Long and Fee 2008; 
Andalman et al. 2011). In fact, it has been suggested that 
the circadian change of the song tempo could be explained 
by the daily pattern of the brain temperature in zebra 
finches (Aronov and Fee 2012). Thus, the observed within-
day change in note durations and IOIs could reflect the cir-
cadian changes in body temperature.

Slowing during a single bout

We found an effect such that the note duration clearly 
became prolonged within each bout. This within-bout 
increase in duration was accompanied by an increase in 
note amplitude. This coupling of increments in note dura-
tion and amplitude observed within the bout was not 
observed in the day-long data, as mentioned above. This 
suggests different mechanisms underlying the observed 
duration drift in these two different time ranges. A previous 
study in zebra finches (Chi and Margoliash 2001) recorded 
neurons in the premotor nucleus (RA) during singing (11 
neurons from 4 birds). The authors found a similar note 
prolongation as we found, associated with the firing pattern 
in RA. This suggests that the observed prolongation could 
be attributed to changes in premotor neural activities. The 
consistency of our findings demonstrates that the prolon-
gation is general to a larger sample over different species. 
The covariation of note duration and amplitude has been 
observed in the introductory notes of zebra finches, and 
could be interpreted as an index of excitation or “readiness” 
state for singing (Rajan and Doupe 2013). Although, con-
trary to our data, note duration in zebra finches shrinks with 
the amplitude increment. However, our data did not include 
the introductory notes, and observed changes were rather 
mild compared to the previous report. The gap duration 
showed decrement complementarily to the note prolonga-
tion during the first 6.5 s in the bout, and this was reflected 
in the relatively constant IOI. This complementary changes 
between notes and gaps during the first half part of the 
bout could be explained by increasing internal excitation, 
or arousal, under a constant tempo which causes a gradual 
increment of expiratory activity, and hence, increases both 
the note duration and amplitude. On the other hand, all of 
the notes, gaps and IOIs were prolonged during the latter 
part of the bout. One could assume that this tempo slow-
ing might reflect the brain temperature changes (Aronov 
and Fee 2012) during a song bout, similar to the above-
mentioned within-day changes. Or, the within-bout drifts in 
temporal properties might be attributed to accumulation of 
fatigue in the muscular and/or neuronal systems for sing-
ing. The potential mechanisms that cause the slowing down 
of song tempo during the song bout should be tested in 
future studies.
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The sources of these two observed effects, within-bout 
prolongation and within-day shrinkage of note durations, 
are likely independent. The results of within-bout analysis 
suggest that mean note duration becomes shorter when bout 
duration is shorter. However, actual bout durations were 
almost constant throughout the day or prolonged slightly in 
the first several hours, whereas the note duration gradually 
shortened throughout the day. Thus, this discrepancy sug-
gests independent sources for the drifts in these two differ-
ent time ranges.

Local trade‑off relationships

Our results showed a local trade-off effect between notes 
and gaps after removing slowly varying drift-like changes, 
such as song tempo acceleration/deceleration over and 
within song bouts. We used an auto-regression model to 
analyze how duration deviations of preceding elements had 
an influence on the current element. The model suggested 
that no obvious effect was found among adjacent elements 
in note, gap, and IOI dataset, with the exception of the last 
element (the one preceding the current element), which had 
a negative correlation in the note–gap sequence. Addition-
ally, weak effects (but not significant) are associated with 
the first coefficients in IOI stream, and the second coeffi-
cients in note–gap stream (Fig. 6e, f). The first coefficients 
of auto-regression in IOI and note–gap dataset are possibly 
attributed to measurement errors in note boundary detec-
tion, and so we could not discuss this result as an intrinsic 
effect caused by bird’s song production system. The weak 
increase in the second coefficient in the note–gap data is 
rather interesting, and might suggest local trade-off rela-
tionships between neighboring notes or gaps. However, the 
direct analysis on note or gap stream did not show such an 
increase in the first coefficient.

At the very least, these results would suggest that local 
variability has no obvious relationships among neighboring 
elements after elimination of global effects (within-day and 
within-day drift), and this local jitter might be caused by 
a random source generated in song motor systems. These 
temporal variabilities at multiple levels constitute temporal 
structures on the basis of the note–gap duration relationship 
in Bengalese finch song.
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